Endurance Training: Recent, Evolving Science & Application to Training Program Design
• Endurance Training: Recent, Evolving Science & Application to Training Program Design

Dr. Jeffrey I. Messer
Chair, Exercise Science Department, & Faculty, Exercise Physiology, Mesa Community College, Mesa, AZ.

Volunteer Assistant Coach, Boy’s Cross-Country, Desert Vista High School, Phoenix, AZ.

jeff.messer@mesacc.edu
(480) 461 – 7378

© Jeff Messer 2019
Presentation Overview

• Part I: Speaker Background

• Part II: What This Presentation Is Not

• Part III: Pre-Training Static Stretching & Muscle Performance

• Part IV: Post-Training Macronutrient Intake
Presentation Overview

• Part V: Cold-Water Immersion & Recovery

• Part VI: Polarized Training vs. Threshold Training

• Part VII: Training Intensity Distribution among Well-Trained & Elite Endurance Athletes

• Part VIII: High-Intensity Interval Training
Presentation Overview

• Part IX: Uphill Interval Training

• Part X: Concurrent Training

• Part XI: Explosive Training, Heavy Weight Training, & Running Economy

• Part XII: “Popular” Literature – Running Economy

© Jeff Messer 2019
Presentation Overview

• **Part XIII**: “Popular” Literature – Long-run duration

• **Part XIV**: Protein Ingestion Prior to Sleep: Potential for Optimizing Post-Exercise Recovery

• **Part XV**: VO_2-max Trainability and High Intensity Interval Training (**HIIT**) in Humans

• **Part XVI**: Plyometric Training & Endurance Performance

© Jeff Messer 2019
Presentation Overview

• **Part XVII**: Adaptations to Aerobic Interval Training: Interactive Effects of Exercise Intensity and Duration

• **Part XVIII**: Exercise Interventions and Sports Injury Prevention

• **Part XIX**: Protein Requirements for Endurance Athletes

• **Part XX**: Mitochondrial Quality versus Mitochondrial Quantity
Presentation Overview

• Part XXI: Carbohydrate Manipulation & Adaptation

• Part XXII: Acknowledgments

• Part XXIII: Questions & Discussion

• Part XXIV: Appendices
Part I

Speaker Background
Speaker Background

• **Education** – Ph.D. in exercise physiology w/ concentration in exercise biochemistry *(Arizona State University, 2004)*
 - M.S. Exercise Science *(Arizona State University, 1995)*
 - M.B.A. *(Duke University, 1992)*
 - B.A. Economics *(Wesleyan University, 1984)*

• **Experience** – Darien High School *(2 Years)*, Desert Vista High School *(2.5 Years)*, Queen Creek High School *(1.5 Years)*, Xavier College Preparatory *(6.5 Years)*, & Desert Vista High School *(2013 / 2014 / 2015 / 2016 / 2017 / 2018 / 2019)*
Speaker Background

• Coaching Influences

– Chris Hanson / Ellie Hardt / Dave Van Sickle

– Dan Beeks, Michael Bucci, Renato Canova, Dana Castoro, Robert Chapman, Steve Chavez, Liam Clemons, Bob Davis, Erin Dawson, Marty Dugard, Jason Dunn, John Hayes, Brad Hudson, Jay Johnson, Tana Jones, Arthur Lydiard, Steve Magness, Joe Newton, Dan Noble, Jim O’ Brien, Tim O’Rourke, Rene Paragas, Haley Paul, Louie Quintana, Ken Reeves Alberto Salazar, Jerry Schumacher, Brian Shapiro, Scott Simmons, Mando Siquieros, Renee Smith-Williams, Doug Soles, Danna Swenson, Bill Vice, Joe Vigil, Mark Wetmore, & Chuck Woolridge
Speaker Background

- **Tara Erdmann, 2:14 / 4:54**
- **Kari Hardt, 2:11 / 10:26**
- **Baylee Jones 2:16 / 4:55 / 10:36**
- **Danielle Jones, 2:09 / 4:39 / 10:09**
- **Haley Paul, 2:13 / 4:51**

- **Two (2) Foot Locker National (FLN) Championship qualifiers**

© Jeff Messer 2019
Speaker Background

- **Sarah Penney**, 2:11 / 10:39
- **Mason Swenson**, 2:16 / 4:59 / 10:56
- **Jessica Tonn**, 2:13 / 4:50 / 10:21
- **Sherod Hardt**, 4:10 / 8:59
- **Garrett Kelly**, 4:17 / 9:18
- **4 x 1,600-m Relay** (20:14 / 20:52 / 21:37 XCP) & **4 x 800-meter Relay** (8:57 XCP / 9:01 DVHS)

- **Desert Vista High School**: 2002 & 2017 Arizona State High School Boys’ Cross-Country Team Champions

- **2012 Mt. SAC Relays 4 x 1,600-m Event** – 3 teams / 12 student-athletes averaged 5:13 per split

- **Four (4) time NXN team participant across two schools** (*XCP, DVHS*) and one (1) time NXN individual qualifier

© Jeff Messer 2019
Part II

What This Presentation Is Not
“What this presentation is not”

Xavier College Preparatory or Desert Vista High School Training Philosophies or Training Programs

https://www.highschoolrunningcoach.com/

© Jeff Messer 2019
Part III

Pre-Training Static Stretching & Muscle Performance
Pre-Training Static Stretching

Perspective: “Aren’t we told that we are not supposed to static stretch?”

...

Comment by an exceptionally accomplished California high school coach providing his rationale for warm-up in response to a question at a 2007 LA ’84 Foundation X-C Clinic
Pre-Training Static Stretching

Perspective: “Anyone have a suggestion for how to warm-up?”

…

Request for assistance by an exceptionally accomplished Midwest high school coach and United States Olympic Training Center (USOTC) camp director in response to a question at the 2008 USOTC Emerging Elite Coaches Camp
Pre-Training Static Stretching

Simic, Sarabon, & Markovic (2013)

• Recognition of the various data sets relating pre-exercise / pre-training muscle stretching to decrements in muscle force and / or power production
Kay & Blazevich (2011)

- http://www.youtube.com/watch?v=sDDSm1Utz7s
Simic, Sarabon, & Markovic (2013)

- PubMed
- SCOPUS
- Web of Science

- Crossover, randomized, and nonrandomized controlled trials
- Studies that evaluated acute effects of static stretching on human muscular performance
- Peer-reviewed publications
- Studies in which static stretching lasted not longer than thirty (30) minutes

© Jeff Messer 2019
Simic, Sarabon, & Markovic (2013)

• **Identification of 1,699 articles for potential inclusion in review**

• **104 studies met the multiple inclusion criteria**
Simic, Sarabon, & Markovic (2013)

- Meta-analytic results indicated that acute static stretch (≤ 45-seconds) has a “most likely trivial effect” on maximal muscle strength.
Simic, Sarabon, & Markovic (2013)

- Meta-analytic results indicated that acute static stretch (46- to 90-seconds or > 90-seconds) has a “likely negative effect” or “almost certainly negative effect” on maximal muscle strength.
Simic, Sarabon, & Markovic (2013)

- Meta-analytic results indicated that acute static stretch is associated with an "unclear acute effect" on muscle power
Simic, Sarabon, & Markovic (2013)

- Meta-analytic results indicated that acute static stretch is associated with an “very likely negative acute effect” on explosive muscular performance tests.
Potential Interpretation: Pre-training static stretching has significant, practically relevant negative acute effects on maximal muscular strength and explosive muscular performance
Simic, Sarabon, & Markovic (2013)

- **Practical Application**

 - Execute a dynamic (*i.e. movement-based*) warm-up prior to training in order to engender the general systematic (*i.e. whole-body*) transitions (*elevated heart rate, elevated cardiac output, elevated sweat rate*) that support aerobic power training
Simic, Sarabon, & Markovic (2013)

• Practical Application

 – Execute a dynamic (i.e. movement-based) warm-up prior to training in order to engender the specific muscular movement patterns and specific movement velocities that support aerobic power training.
Simic, Sarabon, & Markovic (2013)

- Practical Application

 - Execute a static (i.e. movement-based) post-training range-of-motion routine in order to engender both the maintenance of existing range-of-motion and an immediate post-training diagnostic assessment
Simic, Sarabon, & Markovic (2013)

• Practical Application

 – Part XXIV

 – Appendices A - D
Part IV

Post-Training Macronutrient Intake
Post-Training Macronutrient Intake

Post-Training Macronutrient Intake

Ferguson-Stegall et al. (2011)

• Purpose: To investigate training adaptations subsequent to a 4.5-week aerobic endurance training program when daily, post-training nutrient provision was provided in the form of a carbohydrate-protein containing supplement, an isoenergetic carbohydrate containing supplement, or a placebo

 – 0.94 g CHO / kg BM plus 0.31 g PRO / kg BM immediately and 1-hour post-training (*Chocolate Milk Supplement*)

 – 1.25 g CHO / kg BM plus 0.17 g FAT / kg BM immediately and 1-hour post-training (*Carbohydrate Supplement*)

 – 0.00 g CHO / kg BM plus 0.00 g PRO / kg BM immediately and 1-hour post-training (*Placebo*)
Ferguson-Stegall et al. (2011)

- **Experimental design**
 - Randomized, double-blinded, placebo-controlled design
 - Thirty-two (32) healthy, recreationally-active females and males
 - \(\text{VO}_2\text{-max} 35.9 \pm 1.9 \text{ ml O}_2 \text{ * kg}^{-1} \text{ * min}^{-1} \)
 - Macronutrient intake subsequent to five (5) weekly 60-minute bouts of cycle endurance exercise @ 60% *(for the initial 10-minutes)* and 75% *(for the final 50-minutes)* of \(\text{VO}_2\text{-max} \)
Figure 1: VO₂ max changes after 4.5 wks of aerobic endurance training. (a) Change from baseline in absolute VO₂ max. (b) Change from baseline in relative VO₂ max. Values are mean ± SE. Significant treatment differences: *, CM versus PLA and CHO (P < .05).
Ferguson-Stegall et al. (2011)
• Data Interpretation

- Consumption of a daily, post-training chocolate milk supplement relative to either a carbohydrate-only supplement or a placebo is associated with an approximate two-fold (2-fold) greater (i.e. 100%) percentage increase in relative VO$_2$-max

- Body composition improvements, quantified by a lean and fat mass differential, were significantly greater in the chocolate milk supplement group relative to the carbohydrate supplement group
Ferguson-Stegall et al. (2011)

• Practical Application

– Consume an individualized, mass-specific combination of carbohydrate and protein in the immediate post-training period including approximately 1.20 grams of carbohydrate per kilogram body mass and approximately 0.30 grams of protein per kilogram body mass.
<table>
<thead>
<tr>
<th>Body Weight (lbs.)</th>
<th>Body Mass (kilograms)</th>
<th>Post-Training CHO Intake (grams)</th>
<th>Post-Training CHO Intake (calories)</th>
<th>Post-Training PRO Intake (grams)</th>
<th>Post-Training PRO Intake (calories)</th>
<th>Post-Training Caloric Intake (calories)</th>
<th>Post-Training Chocolate Milk (ounces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>43.5</td>
<td>52</td>
<td>199</td>
<td>13</td>
<td>52</td>
<td>251</td>
<td>13.2</td>
</tr>
<tr>
<td>98</td>
<td>44.4</td>
<td>53</td>
<td>203</td>
<td>13</td>
<td>53</td>
<td>256</td>
<td>13.5</td>
</tr>
<tr>
<td>100</td>
<td>45.4</td>
<td>54</td>
<td>207</td>
<td>14</td>
<td>54</td>
<td>261</td>
<td>13.7</td>
</tr>
<tr>
<td>105</td>
<td>47.6</td>
<td>57</td>
<td>217</td>
<td>14</td>
<td>57</td>
<td>274</td>
<td>14.4</td>
</tr>
<tr>
<td>107</td>
<td>48.5</td>
<td>58</td>
<td>221</td>
<td>15</td>
<td>58</td>
<td>280</td>
<td>14.7</td>
</tr>
<tr>
<td>108</td>
<td>49.0</td>
<td>59</td>
<td>223</td>
<td>15</td>
<td>59</td>
<td>282</td>
<td>14.8</td>
</tr>
<tr>
<td>110</td>
<td>49.9</td>
<td>60</td>
<td>227</td>
<td>15</td>
<td>60</td>
<td>287</td>
<td>15.1</td>
</tr>
<tr>
<td>112</td>
<td>50.8</td>
<td>61</td>
<td>232</td>
<td>15</td>
<td>61</td>
<td>293</td>
<td>15.4</td>
</tr>
<tr>
<td>115</td>
<td>52.2</td>
<td>63</td>
<td>238</td>
<td>16</td>
<td>63</td>
<td>300</td>
<td>15.8</td>
</tr>
<tr>
<td>117</td>
<td>53.1</td>
<td>64</td>
<td>242</td>
<td>16</td>
<td>64</td>
<td>306</td>
<td>16.1</td>
</tr>
<tr>
<td>120</td>
<td>54.4</td>
<td>65</td>
<td>248</td>
<td>16</td>
<td>65</td>
<td>313</td>
<td>16.5</td>
</tr>
<tr>
<td>122</td>
<td>55.3</td>
<td>66</td>
<td>252</td>
<td>17</td>
<td>66</td>
<td>319</td>
<td>16.8</td>
</tr>
<tr>
<td>125</td>
<td>56.7</td>
<td>68</td>
<td>259</td>
<td>17</td>
<td>68</td>
<td>327</td>
<td>17.2</td>
</tr>
<tr>
<td>126</td>
<td>57.1</td>
<td>69</td>
<td>261</td>
<td>17</td>
<td>69</td>
<td>329</td>
<td>17.3</td>
</tr>
<tr>
<td>130</td>
<td>59.0</td>
<td>71</td>
<td>269</td>
<td>18</td>
<td>71</td>
<td>340</td>
<td>17.9</td>
</tr>
<tr>
<td>132</td>
<td>59.9</td>
<td>72</td>
<td>273</td>
<td>18</td>
<td>72</td>
<td>345</td>
<td>18.1</td>
</tr>
<tr>
<td>134</td>
<td>60.8</td>
<td>73</td>
<td>277</td>
<td>18</td>
<td>73</td>
<td>350</td>
<td>18.4</td>
</tr>
<tr>
<td>135</td>
<td>61.2</td>
<td>73</td>
<td>279</td>
<td>18</td>
<td>73</td>
<td>353</td>
<td>18.6</td>
</tr>
<tr>
<td>136</td>
<td>61.7</td>
<td>74</td>
<td>281</td>
<td>19</td>
<td>74</td>
<td>355</td>
<td>18.7</td>
</tr>
<tr>
<td>138</td>
<td>62.6</td>
<td>75</td>
<td>285</td>
<td>19</td>
<td>75</td>
<td>360</td>
<td>19.0</td>
</tr>
<tr>
<td>139</td>
<td>63.0</td>
<td>76</td>
<td>287</td>
<td>19</td>
<td>76</td>
<td>363</td>
<td>19.1</td>
</tr>
<tr>
<td>140</td>
<td>63.5</td>
<td>76</td>
<td>290</td>
<td>19</td>
<td>76</td>
<td>366</td>
<td>19.2</td>
</tr>
<tr>
<td>142</td>
<td>64.4</td>
<td>77</td>
<td>294</td>
<td>19</td>
<td>77</td>
<td>371</td>
<td>19.5</td>
</tr>
<tr>
<td>145</td>
<td>65.8</td>
<td>79</td>
<td>300</td>
<td>20</td>
<td>79</td>
<td>379</td>
<td>19.9</td>
</tr>
<tr>
<td>146</td>
<td>66.2</td>
<td>79</td>
<td>302</td>
<td>20</td>
<td>79</td>
<td>381</td>
<td>20.1</td>
</tr>
<tr>
<td>150</td>
<td>68.0</td>
<td>82</td>
<td>310</td>
<td>20</td>
<td>82</td>
<td>392</td>
<td>20.6</td>
</tr>
</tbody>
</table>
Chocolate Milk & Recovery

Amiri et al. (2018)

- Recognition that no prior assessment of the potential efficacy of chocolate milk as a recovery agent and/or ergogenic aid has been undertaken and published

Systematic literature review

© Jeff Messer 2019
Amiri et al. (2018)

- PubMed
- SCOPUS
- Google Scholar
- Studies reflecting a controlled experimental design involving trained athletes or participants
- Studies that evaluated the effect of post-exercise chocolate milk consumption on subsequent exercise performance or recovery
- Peer-reviewed publications
- Study quality formally assessed utilizing Cochrane’s Collaboration tool for assessment of risk bias
Amiri et al. (2018)

- Identification of 1,574 research items for screening
- 23 studies were subsequently selected for full text screening
- Ultimately, twelve (12) clinical trials were included in the meta-analysis
Six (6) studies with fifty-seven (57) participants assessed the potential effects of post-training chocolate milk (CM) consumption on subsequent time-trial-to-exhaustion (TTE) performance.
Amiri et al. (2018)

- A five-study sub-group analysis indicated a statistically significant effect of post-training CM consumption on TTE performance.
- Approximate effect of 0.80 minutes (i.e. 48-seconds) on TTE performance.
Amiri et al. (2018)

- The aforementioned statistically significant effect on TTE performance reflects the comparison of CM to both placebo and to carbohydrate (CHO) + protein (PRO) + fat (FAT) beverages.
Amiri et al. (2018)

- Meta-analytic results emphasize certain experimental limitations
 - Study quality
 - Differential measurement of time trial performance
Amiri et al. (2018)

• Practical Application

 – Consume an individualized, mass-specific combination of carbohydrate and protein in the immediate post-training period including approximately 1.20 grams of carbohydrate per kilogram body mass and approximately 0.30 grams of protein per kilogram body mass

• Body Mass (kg) = Body Weight (lbs.) / 2.205
Early-Recovery Protein Intake

Early-Recovery Protein Intake

- Simultaneous intake of protein \((PRO)\) and carbohydrate \((CHO)\) post-training / post-exercise has been reported to be superior to CHO-only with respect to skeletal muscle 1) glycogen restoration & 2) protein synthesis
Early-Recovery Protein Intake

- Simultaneous intake of protein (PRO) and carbohydrate (CHO) post-training / post-exercise has been reported to be superior to CHO-only with respect to subsequent exercise performance.
Early-Recovery Protein Intake

- However, the prior experimental finding with respect to subsequent exercise performance has not been unequivocal.
Sollie et al. (2018)

- **Purpose:** To evaluate the effect of PRO / CHO co-ingestion on both sprint and time trial (TT) performance eighteen (18) hours subsequent to an exhaustive training session

 - 1.20 g CHO / kg BM immediately post- (exhaustive) training session (CHO Supplement)

 - 0.80 g CHO / kg BM plus 0.40 g PRO / kg BM immediately post- (exhaustive) training session (CHO + PRO Supplement)
Sollie et al. (2018)

- Experimental design
 - Randomized, double-blinded, balanced, crossover design
 - Eight (8) male elite endurance cyclists
 - VO₂-max $74.0 \pm 1.6 \text{ ml O}_2 \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$
 - Two (2) experimental interventions separated by at least six (6) days and consisting of two (2) consecutive days of testing and dietary control
Sollie et al. (2018)

• Notable Data

 – Time trial completion was 41-minutes, 53-second in the CHO + PRO trial; time trial completion was 45-minutes, 26-seconds in the CHO trial

 – The percentage (%) differential in time trial performance was 8.5%
Sollie et al. (2018)

• Notable Data

- Ten-second, post-time trial maximal sprint performance was $1,063 \pm 54$ Watts (mean power output) in the CHO + PRO trial; ten-second, post-time trial maximal sprint performance was $1,026 \pm 53$ Watts in the CHO trial

- The percentage (%) differential in 10-second, post-time trial maximal sprint mean power output was 3.7%
Sollie et al. (2018)

• Practical Application

– Consume an individualized, mass-specific combination of carbohydrate and protein in the immediate post-training period including approximately 1.20 grams of carbohydrate per kilogram body mass and approximately 0.30 to 0.40 grams of protein per kilogram body mass
Part V

Cold-Water Immersion & Recovery

© Jeff Messer 2019
Cold-Water Immersion & Recovery

Cold-Water Immersion & Recovery

- Perspective: “There is good research support to the efficacy of cryotherapy (ice baths) (French et al., 2008, Kuligowski et al. 1998, Burke et al., 2001, 2003)”
- http://www.endurancecorner.com/Serious_Recovery_for_Serious_Athletes

<table>
<thead>
<tr>
<th></th>
<th>Performance time (s)</th>
<th>$\dot{V}O_2_{\text{max}}$ (ml/kg/min)</th>
<th>VT (ml/kg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control leg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-training</td>
<td>758 ± 120</td>
<td>34.7 ± 4.6</td>
<td>19.6 ± 5.0</td>
</tr>
<tr>
<td>Post-training</td>
<td>866 ± 80***</td>
<td>37.1 ± 1.8**</td>
<td>21.7 ± 4.6</td>
</tr>
<tr>
<td>Cooled leg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-training</td>
<td>797 ± 86</td>
<td>36.9 ± 5.5</td>
<td>21.8 ± 3.5</td>
</tr>
<tr>
<td>Post-training</td>
<td>863 ± 99**</td>
<td>35.8 ± 3.4**</td>
<td>23.0 ± 4.2</td>
</tr>
</tbody>
</table>

Data are presented as means ± SD
Difference between pre- and post-training: *$P < 0.05$
Difference between changes induced in the control and the cooled legs: **$P < 0.05$
Question: Does cryotherapy enhance adaptation and/or recovery?
Bleakley & Davison (2010)

- British Nursing Index
- Cumulative Index to Nursing and Allied Health
- EMBASE
- MEDLINE
- Sports Discus

- Researchers screened 3,971 titles
- Researchers read 440 abstracts
- Researchers retrieved 109 full-text articles
- Review included 16 studies

© Jeff Messer 2019
Bleakley & Davison (2010)

- British Nursing Index
- Cumulative Index to Nursing and Allied Health
- EMBASE
- MEDLINE
- Sports Discus

- All study participants had to be healthy human participants
- No restrictions placed on subject experience with cold-water immersion (CWI)
- Interventions of 5-minutes or less with water temperatures of less than 15° C
- Study participants must be attired in swimming shorts / trunks or wear no attire

© Jeff Messer 2019
Bleakley & Davison (2010)

- “Cold shock response”
- “Extreme activation of the sympathetic nervous system”
- “Oxidative stress”
- “Increase in free-radical species formation”
Cold-Water Immersion & Recovery

<table>
<thead>
<tr>
<th>Table 2 Performance time, maximum oxygen uptake ($\dot{V}O_2_{max}$) and ventilatory threshold (VT) before and after leg training by ergometer cycling in series 1, as assessed by one-leg exercise. Comparison of control legs with cooled legs ($n=6$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance time (s)</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Control leg</td>
</tr>
<tr>
<td>Pre-training</td>
</tr>
<tr>
<td>Post-training</td>
</tr>
<tr>
<td>Cooled leg</td>
</tr>
<tr>
<td>Pre-training</td>
</tr>
<tr>
<td>Post-training</td>
</tr>
</tbody>
</table>

Data are presented as means ± SD
Difference between pre- and post-training: *$P<0.05$
Difference between changes induced in the control and the cooled legs: **$P<0.05$
Yamane et al. (2006)

Potential Interpretation: “Myofiber microdamages, and cellular and humoral events induced by endurance and strength training within skeletal muscles must be considered as ... preconditions ... for the adaptive processes leading to improved muscular performances ... cryotherapy will interfere with these regenerative processes and ... will retard rather than support the desired improvement of muscular performance.”
Cold-Water Immersion & Recovery

• Practical Applications:
 – Nike's Oregon Project athletes no longer do routine ice baths
 – new approach is based on the realization that training is designed to stimulate molecular biological ‘signaling pathways’ for fitness adaptations
 – What's new is the realization that inflammation is one of the ‘signaling pathways’--and probably an important one
Cold-Water Immersion & Recovery

• Perspective: “Apart from the physiological benefits conferred by cold-water immersion (CWI) in promoting post-exercise recovery, CWI may be a potential strategy to enhance exercise-induced mitochondrial adaptations”

Ihsan et al. (2015)

• **Subjects**
 - Eight (8) physically-active, healthy males
 - VO$_2$-peak = 46.7 mL O$_2$ * kg$^{-1}$ * min$^{-1}$
 - Recreationally-active for at least one (1) year prior to study
 - No lower limb musculoskeletal injuries

• **Methods**
 - Three (3) repetition training sessions / week for four (4) weeks
 - Long (6- to 8-min), moderate (2-min), and short (30-sec) repetition sessions @ 80 – 110 percent of maximal aerobic velocity
 - One legged post-training cooling for 15-minutes @ ~ 100 C

© Jeff Messer 2019
Ihsan et al. (2015)

• **Methods**
 - Pre- and Post-training muscle biopsies from both legs
 - Biopsies analyzed for multiple regulators of mitochondrial biogenesis, multiple mitochondrial enzyme activities, and multiple mitochondrial protein contents

• **Results**
 - Certain biogenic signaling proteins were up-regulated (*total AMPK*, for example,)
 - Several mitochondrial enzyme activities were not different between conditions
 - Select mitochondrial proteins were increased with CWI
Potential Interpretation: “Despite CWI being a popular post-exercise recovery modality, there was little evidence for how this intervention might influence muscle adaptations to training.”
Potential Interpretation: “Regardless, we advocate caution with regards to regular use of this intervention as some preliminary evidence suggests that cold-induced mitochondrial biogenesis may concomitantly decrease mitochondrial efficiency.”
Yamane et al. (2006) & Ihsan et al. (2015)

Integrative, summary interpretation:
Cryotherapy involving cold-water immersion (CWI) may provide a stimulus for enhanced mitochondrial biogenesis yet simultaneously yield compromised mitochondrial function

i.e. more mitochondria that do not work as well
Part VI

Training Intensity Distribution
Training Intensity Distribution

Neal et al. (2013)

• Experimental design
 – Randomized, crossover design
 – Twelve (12) well-trained male cyclists
 – Two six-week training periods separated by four weeks of detraining
 – All participants completed a 40-kilometer, pre-study time trial at an average power output ≥ 240 Watts
 – Three training sessions per week for six weeks
Neal et al. (2013)

<table>
<thead>
<tr>
<th>Model</th>
<th>Hours / Week</th>
<th>Low-intensity Zone</th>
<th>Moderate-intensity Zone</th>
<th>High-intensity Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarized Training</td>
<td>6.4 ± 1.4</td>
<td>80%</td>
<td>0%</td>
<td>20%</td>
</tr>
<tr>
<td>Threshold Training</td>
<td>7.5 ± 2.0</td>
<td>57%</td>
<td>43%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Data Summary: Neal et al. (2013)

<table>
<thead>
<tr>
<th></th>
<th>Polarized</th>
<th>Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ in Peak Power Output ($%$)</td>
<td>8 + 2</td>
<td>3 + 1</td>
</tr>
<tr>
<td>Δ in Lactate Threshold ($%$)</td>
<td>9 + 3</td>
<td>2 + 4</td>
</tr>
<tr>
<td>Δ in High-Intensity Exercise Capacity ($%$)</td>
<td>85 + 14</td>
<td>37 + 14</td>
</tr>
</tbody>
</table>

© Jeff Messer 2019
Neal et al. (2013)

• Data Interpretation

– Six weeks of cycling endurance training with a polarized intensity distribution leads to greater performance adaptations than a threshold intensity distribution in well-trained cyclists
Neal et al. (2013)

- Practical Application(s)

 - A critical focus for both promoting ongoing adaptation and, ideally, optimizing adaptation may be the incorporation of significant high-intensity interval training, perhaps at the expense of moderate-intensity, continuous threshold training sessions
Part VII

Training Intensity Distribution Among Well-Trained & Elite Endurance Athletes
Training Intensity Distribution Among Well-Trained & Elite Endurance Athletes

Training Intensity Distribution Among Well-Trained & Elite Endurance Athletes

• Objectives:

 – Provide a Systematic Review of Training Intensity Distributions (TID’s) during Preparation, Pre-Competition, and Competition Phases in Distinct Endurance Disciplines

 – Address whether one TID has demonstrated greater efficacy than other TID’s
Training Intensity Distribution Among Well-Trained & Elite Endurance Athletes

• Training Intensity Distribution (*TID*)

• High-Intensity Training (*HIT* or *HIIT*)

• High-volume, low-intensity training (*HVLIT*)

• Threshold Training (*THR*)

• Polarized Training

• Pyramidal Training

• Vast majority of training conducted in the HVLIT range; 84% to 95%

• Small relative volume of training conducted in the THR range; 2% – 11%

• Small relative volume of training conducted in the HIT range; 2% – 9%
Stoggl, T.L. & Sperlich (2015): Pre-competition Phase

• Vast majority of training conducted in the HVLIT range; 78%

• Small relative volume of training conducted in the THR range; 4%

• Small relative volume of training conducted in the HIT range; 18%
Stoggl, T.L. & Sperlich (2015): Competition Phase (data are more sparse)

• Vast majority of training conducted in the HVLIT range; 77%

• Small relative volume of training conducted in the THR range; 15%

• Small relative volume of training conducted in the HIT range; 8%
(\textit{across a six-month period}) TID

- Vast majority of training conducted in the HVLIT range; 71%

- Small relative volume of training conducted in the THR range; 21%

- Small relative volume of training conducted in the HIT range; 8%
Stoggl, T.L. & Sperlich (2015): Randomized, controlled studies

• Esteve-Lanao et al. (2007)

• Group I: 80% / 12% / 8%

• Group II: 67% / 25% / 8%

• Group I retrospectively evaluated and quantified as a 74% / 11% / 15% group

• Group I demonstrated superior improvement in 10.4K TT performance (-157 seconds vs. -122 seconds)
Stoggl, T.L. & Sperlich (2015): Randomized, controlled studies

- Stoggl & Sperlich (2014)

- Group I (HVLIT): 83% / 16% / 1%

- Group II (THR): 46% / 54% / 0%

- Group III (HIT): 43% / 0% / 57%

- Group IV (P): 68% / 6% / 26%

- ALL groups increased Time-to-Exhaustion (TTE)

- Polarized (P) TID increased maximal aerobic capacity (11.7%), time-to-exhaustion (17.4%), and peak performance (5.1%) to the greatest extent

- “experimental studies lasting 6 weeks to 5 months demonstrate superior responses to polarized TID”

• Potential Practical Application(s)

 – Periodically review training intensity distribution (TID)

 – Do not neglect (or eliminate) threshold training (particularly for high school student-athletes)

 – Progress systematically (95 / 5 {freshman}, 90 / 10 {sophomore}, 85 / 15 {junior}, 80 / 20 {senior}) toward increased incorporation of HIT?
Part VIII

High-Intensity Interval Training
High-Intensity Interval Training (HIIT)

Question: Is there a tenable role for and/or value of high-intensity interval training in the broader training programs of endurance athletes?
High-Intensity Interval Training (HIIT)

Gibala et al. (2006)

- **Sprint Interval Training (SIT) Group**
 - 30-second intervals
 - 15-minutes of total training time over a 2-week period

- **Endurance Training (ET) Group**
 - 90-minute to 120-minute continuous runs
 - 630-minutes of total training time over a 2-week period

© Jeff Messer 2019
Data Summary: Gibala et al. (2006)

<table>
<thead>
<tr>
<th></th>
<th>SIT</th>
<th>ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>∆ in Muscle Gly. []</td>
<td>28.0%</td>
<td>17.0%</td>
</tr>
<tr>
<td>∆ in Muscle Buffering Capacity</td>
<td>7.6%</td>
<td>4.2%</td>
</tr>
<tr>
<td>∆ in Endurance Time Trial Performance</td>
<td>10.1%</td>
<td>7.5%</td>
</tr>
</tbody>
</table>
Potential Interpretation: Periodic sprint interval training may not only enhance aerobic capacity but also promote multiple, complementary muscular adaptations that support improved endurance performance.
High-Intensity Interval Training (HIIT)

- Denadai, B.S., Ortiz, M.J., Greco, C.C., & de Mello, M.T. (2006). Interval training at 95% and 100% of the velocity at VO$_2^{\text{max}}$: Effects on Aerobic Physiological Indexes and Running Performance, Applied Physiology, Nutrition, and Metabolism, 31, 737-743.
Experimental Objective: To analyze the effect of two different high-intensity interval training (HIIT) programs on selected physiological indices in addition to potential effects on 1,500-m and 5,000-m running performance in well-trained runners
Denadai et al. (2006)

• **Experimental design**

 – Randomized design

 – Seventeen (17) well-trained male runners

 – All participants completed both pre- and post-training 1,500-m and 5,000-m time trials on a 400-meter track
Denadai et al. (2006)

- Experimental design

 - One four-week training period incorporating two weekly HIIT training sessions and four weekly submaximal training sessions

 - One group completed two weekly HIIT sessions at 95% vVO₂-max while the other group completed two weekly HIIT sessions at 100% vVO₂-max
Table 2. Maximal oxygen uptake ($\textit{VO}_2\textsubscript{max}$), velocity at $\textit{VO}_2\textsubscript{max}$ ($\textit{vVO}_2\textsubscript{max}$), and velocity at onset of blood lactate accumulation (\textit{vOBLA}) of 95% $\textit{vVO}_2\textsubscript{max}$ and 100% $\textit{vVO}_2\textsubscript{max}$ groups, before (pre) and after (post) training.

<table>
<thead>
<tr>
<th>Group</th>
<th>$\textit{vVO}_2\textsubscript{max}$ (km/h)</th>
<th>$\textit{VO}_2\textsubscript{max}$ (mL·kg(^{-1})·min(^{-1}))</th>
<th>\textit{vOBLA} (km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% $\textit{vVO}_2\textsubscript{max}$ ($n = 9$)</td>
<td>19.00±1.0 (Pre) 19.22±0.9 (Post)</td>
<td>59.05±6.0 (Pre) 58.97±5.7 (Post)</td>
<td>17.3±1.3 (Pre) 18.0±1.0* (Post)</td>
</tr>
<tr>
<td>100% $\textit{vVO}_2\textsubscript{max}$ ($n = 8$)</td>
<td>18.30±0.5 (Pre) 19.06±1.0* (Post)</td>
<td>59.98±6.0 (Pre) 58.35±5.4 (Post)</td>
<td>17.3±0.8 (Pre) 18.1±0.6* (Post)</td>
</tr>
</tbody>
</table>

\textbf{Note:} Values are mean ± SD.

\textit{*p} < 0.05 compared with before training.
Table 1. Example of weekly programs for 95% νVO_2_{max} and 100% νVO_2_{max} groups.

<table>
<thead>
<tr>
<th>Days</th>
<th>$95% \nu VO_2_{max}$</th>
<th>$100% \nu VO_2_{max}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>Warm-up: 4 km</td>
<td>Warm-up: 4 km</td>
</tr>
<tr>
<td></td>
<td>Interval training: $4 \times 60% t_{lim} 95% \nu VO_2_{max}$ at $95% \nu VO_2_{max}$</td>
<td>Interval training: $5 \times 60% t_{lim} 100% \nu VO_2_{max}$ at $100% \nu VO_2_{max}$</td>
</tr>
<tr>
<td></td>
<td>Active recovery: $30% t_{lim} 95% \nu VO_2_{max}$ at $50% \nu VO_2_{max}$</td>
<td>Active recovery: $60% t_{lim} 100% \nu VO_2_{max}$ at $50% \nu VO_2_{max}$</td>
</tr>
<tr>
<td></td>
<td>Cool-down: 2 km</td>
<td>Cool-down: 2 km</td>
</tr>
<tr>
<td>Tue</td>
<td>45 min at $70% \nu VO_2_{max}$</td>
<td>45 min at $70% \nu VO_2_{max}$</td>
</tr>
<tr>
<td>Wed</td>
<td>Interval training as on Monday</td>
<td>Interval training as on Monday</td>
</tr>
<tr>
<td>Thu</td>
<td>60 min at $60% \nu VO_2_{max}$</td>
<td>60 min at $60% \nu VO_2_{max}$</td>
</tr>
<tr>
<td>Fri</td>
<td>Warm-up: 3 km</td>
<td>Warm-up: 3 km</td>
</tr>
<tr>
<td></td>
<td>2×20 min at OBLA velocity with 5 min of active recovery at $60% \nu VO_2_{max}$ between bouts</td>
<td>2×20 min at OBLA velocity with 5 min of active recovery at $60% \nu VO_2_{max}$ between bouts</td>
</tr>
<tr>
<td></td>
<td>Cool-down: 2 km</td>
<td>Cool-down: 2 km</td>
</tr>
<tr>
<td>Sat</td>
<td>Rest</td>
<td>Rest</td>
</tr>
<tr>
<td>Sun</td>
<td>60 min at $60% \nu VO_2_{max}$</td>
<td>60 min at $60% \nu VO_2_{max}$</td>
</tr>
<tr>
<td>Total volume</td>
<td>75–80 km</td>
<td>75–80 km</td>
</tr>
</tbody>
</table>
Table 4. The 1500 and 5000-m time trial data from the 95% \(vV\text{O}_2\text{max} \) and 100% \(vV\text{O}_2\text{max} \) groups, before (pre) and after (post) training.

<table>
<thead>
<tr>
<th>Group</th>
<th>1500 m (s)</th>
<th>5000 m (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>95% (vV\text{O}_2\text{max}) ((n = 9))</td>
<td>271.1±13.5</td>
<td>269.0±13.4</td>
</tr>
<tr>
<td>100% (vV\text{O}_2\text{max}) ((n = 8))</td>
<td>270.7±8.7</td>
<td>265.5±8.4*</td>
</tr>
</tbody>
</table>

Note: Values are mean ± SD.
*p < 0.05 compared with before training.
Denadai et al. (2006)

• Conclusion

– 5,000-m run performance can be significantly improved in well-trained runners using a 4-week program consisting of 2 HIIT sessions (at 95% or 100% of \(vVO_2\text{-max}\)) and 4 submaximal sessions per week

• Conclusion

– However, improvement in 1,500-m run performance appears to be dependent upon incorporation of training at 100% of \(vVO_2\text{-max}\)
High-Intensity Interval Training (*HIIT*)

Esfarjani & Laursen (2007)

• **Subjects**
 - Seventeen (17) moderately-trained male runners
 - Pre-intervention VO$_2$-max = 51.6 ± 2.7 mL O$_2$ * kg$^{-1}$ * min$^{-1}$
 - No HIIT training for at least three (3) months prior to the study

• **Methods**
 - Ten-week (10) treadmill training program
 - **Group I:** 2 HIIT sessions & 2 distance runs (60-minutes at 75% of VO$_2$-max) each week
 - **Group II:** 2 HIIT sessions & 2 distance runs (60-minutes at 75% of VO$_2$-max) each week
 - **Group III:** 4 distance runs (60-minutes at 75% of VO$_2$-max) each week

© Jeff Messer 2019
Esfarjani & Laursen (2007)

• **Methods**
 - Group I: 2 HIIT sessions (5 to 8 repetitions @ 100% \(\overline{VO_2}\)-max for 60% \(T_{max}\) w/ 1:1 work:rest ratio) each week
 - Group II: 2 HIIT sessions (7 to 12 x 30-second repetitions @ 130% \(\overline{VO_2}\)-max w/ 1:9 work:rest ratio) each week
 - Group III: No HIIT sessions throughout the training intervention

• **Outcome Measures**
 - \(\overline{VO_2}\)-max (\(mL O_2 * kg^{-1} * min^{-1}\))
 - \(\overline{vVO_2}\) (kilometers * hour\(^{-1}\))
 - \(T_{max}\) (seconds)
 - \(V_{LT}\) (kilometers * hour\(^{-1}\))
<table>
<thead>
<tr>
<th>∆(%)</th>
<th>Group I</th>
<th>Group II</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO₂-max</td>
<td>+9.1</td>
<td>+6.2</td>
<td>+2.1</td>
</tr>
<tr>
<td>vVO₂</td>
<td>+6.4</td>
<td>+7.8</td>
<td>+1.3</td>
</tr>
<tr>
<td>Tmax</td>
<td>+35.0</td>
<td>+32.0</td>
<td>+3.5</td>
</tr>
<tr>
<td>VLT</td>
<td>+11.7</td>
<td>+4.7</td>
<td>+1.9</td>
</tr>
</tbody>
</table>
Potential Interpretation: Periodic repetition training at approximately $v_{\text{VO}_2\text{-max}}$ pace / intensity appears to correlate robustly (yet again) with multiple, performance-enhancing adaptations such as **IMPROVED** velocity at VO$_2$-max ($v_{\text{VO}_2\text{-max}}$) and **ENHANCED** velocity at lactate threshold (V_{LT}).
Part IX

Uphill Interval Training

© Jeff Messer 2019
Uphill Interval Training

Barnes et al. (2012)

• Introduction
 – Uphill running is a form of running-specific resistance training
 – Optimal parameters for prescribing uphill interval training are unknown
 – Dose-response approach might yield specific insight as to program design
Barnes et al. (2012)

• **Methods**

 – Twenty well-trained runners performed VO$_2$-max, running economy and 5-k time trial assessments

 – Subsequent random assignment to one of five intensities of uphill interval training

 – 20 x 10-sec. intervals at 120% of VO$_2$-max w 18% grade / 2 x 20-min. intervals at 80% of VO$_2$-max w 4% grade
Barnes et al. (2012)

• **Results**

 – Improvement in running economy was greatest at the highest intensity of hill interval training

 – There was no clear optimum for improvement of 5-K time trial performance
Barnes et al. (2012)

• Discussion
 – Uphill interval training @ 95% VO₂-max (8 x 2-min intervals) produced greatest improvements in most physiological measures related to performance
 – However, running economy improved most dramatically at the greatest (120% VO₂-max) intensity

© Jeff Messer 2019
• Conclusion(s)
 – “Until more data are obtained, runners can assume that any form of high-intensity uphill interval training will benefit 5-k time trial performance”
 – Integrate short- and intermediate- / long-hill repetitions into hill training workouts
Part X

Concurrent Training
Concurrent Training

© Jeff Messer 2019
Concurrent Training

• **Purpose:** To not only examine the effects of concurrent strength and endurance training on aerobic performance but also determine if the order of training within a training session differentially impacts endurance performance
 – Endurance training group \((E)\)
 – Strength training group \((S)\)
 – Endurance / strength training group \((E + S)\)
 – Strength / endurance training group \((S + E)\)
Concurrent Training

- **Experimental design**
 - Five (5) group \((E, S, E + S, S + E, \& C)\) design
 - Forty-eight (48) physically-active subjects
 (engaged in approximately fifteen {15} hours per week of activities specific to their sport studies academic program)
 - \(\text{VO}_2\text{-max} = 50.6 \text{ ml O}_2 \text{ * kg}^{-1} \text{ * min}^{-1}\)
Concurrent Training

Table 1: Strength training programme

<table>
<thead>
<tr>
<th></th>
<th>Cycle 1</th>
<th>Cycle 2</th>
<th>Cycle 3</th>
<th>Cycle 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of cycle (weeks)</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Main objective</td>
<td>Strength endurance</td>
<td>Strength endurance</td>
<td>Explosivity</td>
<td>Explosivity</td>
</tr>
<tr>
<td>Number of exercises per circuit</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Number of circuit revolutions (series)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Work/rest (s)</td>
<td>30/30</td>
<td>40/20</td>
<td>30/30</td>
<td>40/20</td>
</tr>
<tr>
<td>Inter-series recovery (min)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total duration of the session (min)</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

© Jeff Messer 2019
Concurrent Training

Table 2 Physical and physiological characteristics before and after 12 weeks of training

<table>
<thead>
<tr>
<th></th>
<th>4 km time trial [s]</th>
<th>vVo₂MAX [km/h]</th>
<th>tₜₘₐₓ [s]</th>
<th>l/min</th>
<th>ml/kg/min</th>
<th>ml/kg⁰₇₅/min</th>
<th>ml/kg/min</th>
<th>%Vo₂MAX</th>
<th>HRmax (beats/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E (n = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>934.2 (47.0)</td>
<td>16.17 (1.06)</td>
<td>312.20 (68.01)</td>
<td>3.90 (0.53)</td>
<td>49.84 (3.06)</td>
<td>147.13 (10.29)</td>
<td>38.90 (2.60)</td>
<td>78.05 (1.87)</td>
<td>187.50 (6.26)</td>
</tr>
<tr>
<td>After</td>
<td>881.0 (39.2)**</td>
<td>17.52 (0.72)**</td>
<td>394.2 (53.9)**</td>
<td>4.22 (0.53)**</td>
<td>54.73 (3.42)**</td>
<td>162.03 (10.46)**</td>
<td>44.71 (2.40)**</td>
<td>81.78 (2.96)**</td>
<td>187.88 (6.06)</td>
</tr>
<tr>
<td>S (n = 9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>931.1 (32.8)</td>
<td>16.12 (0.50)</td>
<td>280.89 (55.56)</td>
<td>3.41 (0.35)</td>
<td>50.08 (4.89)</td>
<td>143.82 (14.18)</td>
<td>39.08 (3.26)</td>
<td>78.15 (2.22)</td>
<td>190.38 (9.10)</td>
</tr>
<tr>
<td>After</td>
<td>908.1 (29.4)*</td>
<td>16.38 (0.41)*</td>
<td>326.67 (57.88)**</td>
<td>3.69 (0.30)**</td>
<td>53.00 (4.05)**</td>
<td>153.09 (11.77)**</td>
<td>42.33 (2.86)**</td>
<td>79.92 (1.77)*</td>
<td>191.25 (7.55)</td>
</tr>
<tr>
<td>E+S (n = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>929.3 (30.4)</td>
<td>16.16 (1.02)</td>
<td>274.90 (63.30)</td>
<td>3.75 (0.24)</td>
<td>51.15 (3.45)</td>
<td>149.58 (8.20)</td>
<td>39.63 (2.34)</td>
<td>77.51 (1.23)</td>
<td>187.75 (9.02)</td>
</tr>
<tr>
<td>After</td>
<td>886.0 (11.3)</td>
<td>17.48 (0.79)**</td>
<td>346.00 (39.50)**</td>
<td>4.20 (0.20)**</td>
<td>56.61 (2.03)**</td>
<td>166.05 (3.54)**</td>
<td>45.96 (1.67)**</td>
<td>81.19 (0.88)**</td>
<td>188.75 (7.92)</td>
</tr>
<tr>
<td>E+S (n = 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>932.3 (17.1)</td>
<td>16.18 (0.91)</td>
<td>312.70 (57.01)</td>
<td>3.65 (0.42)</td>
<td>51.29 (1.60)</td>
<td>148.83 (6.53)</td>
<td>40.25 (0.93)</td>
<td>78.50 (1.94)</td>
<td>187.13 (7.61)</td>
</tr>
<tr>
<td>After</td>
<td>852.3 (29.5)**</td>
<td>17.86 (0.45)**</td>
<td>417.01 (38.02)**</td>
<td>4.16 (0.38)**</td>
<td>58.27 (1.90)**</td>
<td>169.24 (4.54)****</td>
<td>48.92 (1.77)****</td>
<td>83.97 (1.89)****</td>
<td>188.25 (5.78)</td>
</tr>
<tr>
<td>C (n = 9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>920.8 (42.3)</td>
<td>16.14 (0.78)</td>
<td>253.89 (51.01)</td>
<td>3.67 (0.34)</td>
<td>50.65 (6.34)</td>
<td>147.73 (17.22)</td>
<td>38.66 (4.06)</td>
<td>76.49 (2.25)</td>
<td>191.25 (9.59)</td>
</tr>
<tr>
<td>After</td>
<td>923.83 (35.2)</td>
<td>16.18 (0.75)</td>
<td>247.56 (50.52)</td>
<td>3.68 (0.28)</td>
<td>50.51 (4.71)</td>
<td>147.51 (12.96)</td>
<td>38.70 (3.68)</td>
<td>76.63 (1.86)</td>
<td>191.63 (8.72)</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01, significantly different from before training.

vVo₂MAX, Lowest velocity associated with Vo₂MAX; tₜₘₐₓ, time to exhaustion at vVo₂MAX; Vo₂MAX, maximal oxygen uptake; Th₂vent, second ventilatory threshold or respiratory compensation threshold; HRmax, maximal heart rate.
Concurrent Training

• **Data Interpretation**
 – 4-kilometer time trial running performance improved in the E + S group (8.57%), the E group (5.69%), the S + E group (4.66%), and the S group (2.47%)

 • **E + S group improvement** superior to **S + E group improvement**

 • **E group improvement** superior to **S + E group improvement**
Concurrent Training

© Jeff Messer 2019
Concurrent Training

• **Purpose:** To investigate if resistance exercise can alter the molecular signaling response to endurance exercise in skeletal muscle

• **Hypothesis:** Molecular signaling of mitochondrial biogenesis subsequent to endurance exercise is impaired by resistance exercise

- 60-minutes of cycling exercise @ 65% of VO₂-max (**E**)

- 60-minutes of cycling exercise @ 65% of VO₂-max followed by 6 sets of leg press @ 70-80% of 1-repetition maximum (**1-RM**) (**ER**)
Concurrent Training

• Experimental design
 – Randomized, crossover design
 – Ten (10) recreationally-active subjects (*not engaged in programmed endurance or resistance exercise during the six months prior to the study*)
 – VO_2-peak = 50.0 ml O$_2$ * kg$^{-1}$ * min$^{-1}$ \pm 1.9 ml O$_2$ * kg$^{-1}$ * min$^{-1}$
 – 1-RM leg press = 336 \pm 22.3 kg
Concurrent Training

![Graph showing Concurrent Training results](image_url)
Concurrent Training

![Graph showing PRC mRNA expression over time after exercise](image)

- **Pre-exercise**
- **1h Post**
- **3h Post**

© Jeff Messer 2019
Concurrent Training

• Data Interpretation

– The messenger RNA (mRNA) of multiple “master regulators” of mitochondrial biogenesis are almost 50% \((PGC-1\alpha)\) and 90% \((PGC-1\alpha & PRC)\) higher, respectively, in the post-training period when resistance training is performed subsequent to endurance exercise as compared to single-mode endurance exercise.
Concurrent Training

• Practical Application
 – Perform a brief bout of (lower body) resistance exercise immediately subsequent to an endurance training session in order to amplify the training-induced stimulation of mitochondrial biogenesis

 – Bouts of General Strength (GS) training (Appendices E, F, G, H, & I)?
Part XI

Explosive Training, Heavy Weight Training, & Running Economy
Explosive Training, Heavy Weight Training, & Running Economy

Objective: To Evaluate the Effect of Concurrent Training on Running Economy (RE) in Endurance Athletes
Denadai et al. (2016)

- Searched PubMed database
- Searched Web of Science database
- Reviewed reference lists from selected studies
- Searched studies published up to August 15th, 2015
- Incorporated Inclusion / Exclusion Criteria
- One-hundred and nineteen (119) relevant studies were identified
Denadai et al. (2016)

Ultimately, sixteen (16) studies were formally assessed to meet all requisite criteria and thus be sufficiently rigorous to be included in the quantitative analysis.
Denadai et al. (2016)

- Percentage (%) change in RE ranged from -12.52 to +0.72
- Overall, concurrent training had a positive effect: -3.93%
- Only heavy weight training (HWT) and explosive training (EXP) presented a % change significantly lower than zero

Millet et al. (2012): -12.52% change in RE consequent to HWT emphasizing half-squat and heel raises

Saunders et al. (2006): -3.63% change in RE consequent to EXP emphasizing foundational plyometric movements
Denadai et al. (2016)

• Short- and medium-term training periods (6-to 14-weeks) of concurrent training were sufficient to enhance RE in recreationally-trained endurance runners

• Relatively longer training periods (14-to 20-weeks) in combination with relatively high weekly training volumes of endurance running were requisite to enhancing RE in highly-trained individuals
Denadai et al. (2016)

• Practical applications:

 – Consistently incorporate age-appropriate, beginning- and intermediate-level plyometric training throughout the season for both novice and experienced endurance athletes in order to duly emphasize foundational RE enhancement

 – Consider the eventual, selective incorporation of specific, lower-limb, heavy resistance exercises in order to further amplify foundational improvements in RE
Part XII

“Popular” Literature – Running Economy
Running Economy

The presenter’s incorporation of the term “popular literature” refers to non-data-based, non-peer reviewed information / literature sources
Question: Can running economy be enhanced through incorporation of resistance training?
Running Economy

Perspective: “… a 2008 review article by Linda Yamamoto and colleagues indicates a trend toward improved RE when plyometric exercises are added to an endurance training program.”
Running Economy

Running Economy

• The prior data-based resource as referenced in a popular literature source purportedly addresses “highly trained runners” in a systematic review of applicable scientific literature.

• Definition of “highly trained runners”
 – Run greater than or equal to thirty (30) miles per week or
 – Run greater than or equal to five (5) days per week
Question: How does one define a “highly trained runner?”
Running Economy

Question: Is the aforementioned review of literature as cited in a popular magazine applicable to high school cross-country student-athletes?
Running Economy

Interpretation: Simple acceptance and application of the summary statements and corresponding recommendations offered through non-data-based literature sources may be suboptimal
Running Economy

• Practical Application

– Coaches would likely benefit from personally reading select data-based literature

– Consequent, associated, select application of data-based literature *(Saunders et al., 2006)* is likely preferable to passive acceptance of popular literature recommendations

© Jeff Messer 2019
TABLE 2. Nine-week plyometric training program.

<table>
<thead>
<tr>
<th>Week session</th>
<th>1</th>
<th>2</th>
<th>2–5</th>
<th>6–9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back extension</td>
<td>1 x 15</td>
<td></td>
<td>2 x 15</td>
<td>2 x 15</td>
</tr>
<tr>
<td>Leg press</td>
<td>2 x 6</td>
<td></td>
<td>5 x 8</td>
<td>5 x 8</td>
</tr>
<tr>
<td>Countermovement jumps</td>
<td>1 x 6</td>
<td></td>
<td>3 x 6</td>
<td>3 x 6</td>
</tr>
<tr>
<td>Knee lifts (technical)</td>
<td>1 x 20</td>
<td></td>
<td>3 x 20</td>
<td>3 x 20</td>
</tr>
<tr>
<td>Ankle jumps</td>
<td>1 x 10</td>
<td></td>
<td>3 x 10</td>
<td>3 x 10</td>
</tr>
<tr>
<td>Hamstring curls</td>
<td>1 x 10</td>
<td></td>
<td>3 x 10</td>
<td>3 x 10</td>
</tr>
<tr>
<td>Alternate-leg bounds</td>
<td>1 x 10</td>
<td></td>
<td>6 x 10 m</td>
<td>6 x 10 m</td>
</tr>
<tr>
<td>Skip for height</td>
<td>1 x 30 m</td>
<td></td>
<td>4 x 30 m</td>
<td>4 x 30 m</td>
</tr>
<tr>
<td>Single-leg ankle jumps</td>
<td>1 x 20 m</td>
<td></td>
<td>4 x 20 m</td>
<td>4 x 20 m</td>
</tr>
<tr>
<td>Continuous hurdle jumps</td>
<td></td>
<td></td>
<td></td>
<td>5 x 5</td>
</tr>
<tr>
<td>Scissor jumps for height</td>
<td></td>
<td></td>
<td></td>
<td>5 x 8</td>
</tr>
</tbody>
</table>
Part XIII

“Popular” Literature – Long-run duration
Long-Run Duration

The presenter’s incorporation of the term “popular literature” refers to non-data-based, non-peer reviewed information / literature sources
Long-Run Duration

Question: Is there a specific long-run duration and/or minimal requirement for long-run duration necessary to support desired physiological adaptation(s)?
Long-Run Duration

Perspective: “… ‘the magic number to hit in a single run is 80 minutes. A lot of the science shows that once you reach the 80-minute mark, there is a bigger benefit in endurance enzymes made.’ ______ notes that studies have shown that the differences of enzymatic production from 60 to 80 minutes are enormous.”
Long-Run Duration

• The previous quotation and subsequent summary statement reflect the perspective of a highly recognized, so-called “elite” US marathon coach

• Immediately subsequent to reading these statements, J.I. Messer contacted the coach directly and requested specific, scientific references

© Jeff Messer 2019
Long-Run Duration

• The presenter’s initial request for specific references was addressed through an electronic mail response indicating that the author of the comment would promptly respond subsequent to an ongoing geographical relocation

• Presenter never received a follow-up response to the initial request
Long-Run Duration

• The presenter’s second and final request for specific references was addressed through an electronic mail response in which the author of the comment conceded that he could not cite a single scientific reference.

• His most telling comment to the presenter was … “I think I saw a similar statement in an issue of Running Research News.”
Long-Run Duration

Perspective: Training programs need not (and likely cannot and should not) always be data-based but statements offered by widely-recognized, widely-written “expert” coaches should reflect an honest, information-based approach

© Jeff Messer 2019
Long-Run Duration

Question: Is there a viable data-based perspective that we can offer with regard to appropriate long-run duration?
Long-Run Duration

Interpretation: The previous data set robustly reminds us that specific adaptive “signals” in skeletal muscle (glycogen depletion, for example,) accumulate progressively through distinct combinations of duration and intensity
Long-Run Duration

• Practical Application

– Existing scientific literature has yet to identify a critical / optimal long run duration

– It is highly likely that no such duration exists as muscle physiology and attendant adaptation appear to respond progressively to training stress / stimuli
Long-Run Duration

• Practical Application

 – Simply maintain a principled approach to the development and incorporation of a long-run in a broader training program
 • Consistency
 • Progression
 • Goal-specificity
Part XIV

Protein Ingestion Prior to Sleep: Potential for Optimizing Post-Exercise Recovery

© Jeff Messer 2019
Protein Ingestion Prior to Sleep

Protein Ingestion Prior to Sleep

- In addition to the amount and source(s) of protein ingested subsequent to an acute bout of training, associated timing of protein ingestion has been identified and accepted as a key factor in modulating post-exercise muscle anabolism (Beelen, Burke, Gibala, & van Loon, 2011)
Protein Ingestion Prior to Sleep

While immediate post-training protein ingestion does support enhanced muscle protein synthesis in the acute stages / period of post-training recovery, such a strategy does not support a sustained increase in muscle protein synthetic rate during subsequent overnight recovery (Beelen, Tieland, Gijsen, Vandereydt, Kies, Kuipers, Saris, Koopman, & van Loon, 2008)
Protein Ingestion Prior to Sleep

• Recreational athletes
• Single bout of evening resistance exercise
• All participants were provided standardized post-exercise recovery nutrition
• 30-minutes prior to sleep, participants ingested either a placebo or 40 grams of casein protein
Protein Ingestion Prior to Sleep

Figure 3. Dietary protein ingestion prior to sleep stimulates muscle protein synthesis during overnight recovery. Fractional synthesis rate (FSR) of mixed muscle protein during overnight recovery from a single bout of resistance type exercise. In the protein trial, 40 g of casein protein were ingested prior to sleep. Values represent means ± SEM. *Significantly different from placebo (P=0.05). Figure redrawn from Res et al. (2012) Med. Sci. Sports Exerc. 44:1560-1569, American College of Sports Medicine.
Protein Ingestion Prior to Sleep

Nutritional Recommendations for the Athlete

Provide sufficient protein (20-25 g) with each main meal

Consider coingesting some protein with carbohydrate during exercise (to optimize protein synthesis. However, protein has also been linked with slowing of delivery of carbohydrate and fluid as well as GI distress, and thus individuals need to determine their own strategy)

Ingest 20-25 g of protein immediately after exercise

Consume 20-40 g of protein prior to sleep
Part XV

VO$_2$-max Trainability and High Intensity Interval Training (HIIT) in Humans
VO$_2$-max and HIIT

- Analysis reviewed studies published in English from 1965 – 2012

- Study inclusion criteria involved 6- to 13-week training periods, ≥ 10-minutes of HIIT in a representative training session (*i.e.* workout), and a $\geq 1:1$ work:rest ratio
VO$_2$-max and HIIT

197 articles identified through PubMed search

30 articles examined in full

70 additional articles included from author search and reference review

37 articles included in synthesis

40 cohorts included in meta-analysis

167 articles excluded from title and abstract:
- Intervals that were too short (n=7)
- No IT on a bike or a treadmill (n=82)
- No useful data (n=10)
- Rest periods too long (n=2)
- Study duration too short (n=8)
- Subjects too old (n=9)
- Trained subjects (n=41)
- Unhealthy subjects (n=7)
- W:R ratio too low (n=1)

63 articles excluded after review:
- No IT (n=17)
- W:R too low (n=8)
- IT duration too short (n=7)
- Insufficient data (n=18)
- Same subjects (n=1)
- Exercise frequency too low (n=4)
- Subjects too old (n=1)
- Nonhuman subjects (n=1)
- Trained subjects (n=3)
- Study duration too short (n=1)
- Training intensity too high (n=1)
- Training intensity too low (n=1)
VO$_2$-max and HIIT
VO$_2$-max and HIIT

• Authors note “conventional wisdom” that repetitions of 3- to 5-minutes are thought to be particularly effective in invoking enhanced aerobic capacity

• Current analysis strongly supports this perspective; the nine (9) studies that associate with the greatest increases in maximal aerobic capacity (VO_2-max) involve 3- to 5-minute intervals and relatively high intensities ($\geq 85\%$ of VO_2-max)
VO$_2$-max and HIIT

Potential Interpretation: Emphasize repetitions of, for example, 800-m, 1,000-m, and 1,200-m in order to provide a robust stimulus for enhancement of maximal aerobic capacity *(and include very brief, for instance, repetitions of 150-m and 200-m to provide a complementary stimulus for enhancement of both maximal aerobic capacity and running economy, Gibala et al., 2012)*
Part XVI

Plyometric Training & Endurance Performance
Plyometric Training & Endurance Performance

- Primary study objective was to assess the effect(s) of concurrent endurance and plyometric training on both endurance time trial performance and explosive strength in competitive middle- and long-distance runners.
Plyometric Training & Endurance Performance

• 36 participants (14 women, 22 men)
• Mean age of 22.7 ± 2.7 years
• Minimum of 2-years of competitive national and / or international experience
• Personal best performances ranging from 3:50 to 4:27 (min:sec, 1,500-m) and 2:32 to 2:52 (hours:min, marathon)
Plyometric Training & Endurance Performance

• Mean weekly endurance training volume of 67.2 ± 18.9 kilometers

• Mean pre-study 2.4-km time trial performance of approximately 7.8-minutes (i.e. 5-minute, 13-second per mile pace for approximately 1.5-miles)
Plyometric Training & Endurance Performance

- Six (6) week plyometric training intervention
- Two (2) plyometric training sessions per week
- Less than thirty (30) minutes per session
- All plyometric training involved depth jumps (2 x 10 jumps from a 20 cm box, 2 x 10 jumps from a 40 cm box, and 2 x 10 jumps from a 60 cm box)
- Fifteen (15) second rest intervals between repetitions and two (2) minute rest intervals between sets

© Jeff Messer 2019
Plyometric Training & Endurance Performance

<table>
<thead>
<tr>
<th></th>
<th>Plyometric</th>
<th>Control</th>
<th>Plyometric</th>
<th>Control</th>
<th>Plyometric</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4-km TT</td>
<td>2.4 km TT</td>
<td>20-m Sprint</td>
<td>20-m Sprint</td>
<td>CMJA</td>
<td>CMJA</td>
<td></td>
</tr>
<tr>
<td>7.6 to 7.3-minutes</td>
<td>3.9% faster</td>
<td>8.0- to 7.9-minutes</td>
<td>1.3% faster</td>
<td>3.92 to 3.83 seconds</td>
<td>3.97 to 3.94 seconds</td>
<td></td>
</tr>
<tr>
<td>8.0- to 7.9-minutes</td>
<td>2.3% faster</td>
<td>3.92 to 3.83 seconds</td>
<td>3.97 to 3.94 seconds</td>
<td>36.1 to 39.3 cm</td>
<td>34.1 to 36.3 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.97 to 3.94 seconds</td>
<td>36.1 to 39.3 cm</td>
<td>34.1 to 36.3 cm</td>
<td>8.9% higher</td>
<td>6.5% higher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.9% higher</td>
<td>6.5% higher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Plyometric Training & Endurance Performance

Potential Interpretation: Incorporate plyometric training into the ongoing endurance training of student-athletes in order to both enhance muscular strength / power and improve endurance performance.
Part XVII

Adaptations to Aerobic Interval Training: Interactive Effects of Exercise Intensity and Duration

© Jeff Messer 2019
Adaptations to Aerobic Interval Training

- **Experimental Objective:** To compare the effects of three distinct 7-week interval training programs varying in duration but matched for effort in trained cyclists
Adaptations to Aerobic Interval Training

• Experimental design

 – Thirty-five (35) well-trained (pre-training VO_2-peak = 52 \pm 6 $ml \ O_2 \ * \ \text{kg}^{-1} \ * \ \text{min}^{-1}$) cyclists

 – Four distinct seven-week training protocols

 – Average of approximately five (5) training sessions per week for the seven-week training period

 – All participants completed pre- and post- maximal aerobic capacity testing and time trial evaluation

© Jeff Messer 2019
Adaptations to Aerobic Interval Training

• Experimental design

 – One group (*six males, two females*) engaged strictly in low-intensity, continuous training *four to six times per week* {“long, slow distance”}

 – One group (*seven males, two females*) executed *two weekly sessions of 4 x 16-minutes (w/ a three-minute recovery)* in addition to *two-to-three weekly, low-intensity, continuous training sessions* {“threshold training”}
Adaptations to Aerobic Interval Training

• Experimental design

– One group (*nine males*) executed two weekly sessions of 4 x 8-minutes (*w/ a two-minute recovery*) in addition to two-to-three weekly, low-intensity, continuous training sessions {“Supra-threshold, sub-VO$_2$-max training”}

– One group (*seven males, two females*) executed two weekly sessions of 4 x 4-minutes (*w/ a two-minute recovery*) in addition to two-to-three weekly, low-intensity, continuous training sessions {“VO$_2$-max training”}
Adaptations to Aerobic Interval Training

<table>
<thead>
<tr>
<th></th>
<th>Low (n = 8)</th>
<th>4 × 16 min (n = 9)</th>
<th>4 × 8 min (n = 9)</th>
<th>4 × 4 min (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRE mean (SD)</td>
<td>POST</td>
<td>PRE</td>
<td>POST</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>80.4 (12.5)</td>
<td>79.5* (12.2)</td>
<td>83.8 (10.8)</td>
<td>81.6* (11.0)</td>
</tr>
<tr>
<td>Body fat (%)</td>
<td>20.8 (7.2)</td>
<td>20.0* (7.2)</td>
<td>22.2 (5.4)</td>
<td>20.7 (5.2)</td>
</tr>
<tr>
<td>HF\text{peak}</td>
<td>182 (12)</td>
<td>182 (9)</td>
<td>183 (9)</td>
<td>178* (8)</td>
</tr>
<tr>
<td>\text{VE}_{\text{Peak}} (L/min)</td>
<td>157 (35)</td>
<td>159 (40)</td>
<td>155 (35)</td>
<td>158 (39)</td>
</tr>
<tr>
<td>Lactate\text{peak} (mmol/L)</td>
<td>14.9 (1.6)</td>
<td>13.7* (1.0)</td>
<td>14.8 (1.6)</td>
<td>13.9 (1.5)</td>
</tr>
<tr>
<td>RPE\text{peak}</td>
<td>19.4 (0.5)</td>
<td>19.5 (0.5)</td>
<td>19.3 (0.7)</td>
<td>19.6 (0.5)</td>
</tr>
<tr>
<td>\text{VO2}_{\text{Peak}} (L/min)</td>
<td>4.2 (0.7)</td>
<td>4.3 (0.7)</td>
<td>4.3 (0.5)</td>
<td>4.5* (0.7)</td>
</tr>
<tr>
<td>(ml kg/min)</td>
<td>52.7 (8.0)</td>
<td>54.5 (6.9)</td>
<td>51.1 (5.8)</td>
<td>54.4* (5.2)</td>
</tr>
<tr>
<td>\text{Power}{\text{VO2}{\text{Peak}}} (W)</td>
<td>349 (44)</td>
<td>358 (48)</td>
<td>361 (51)</td>
<td>372* (50)</td>
</tr>
<tr>
<td>(W/kg)</td>
<td>4.5 (0.6)</td>
<td>4.6 (0.6)</td>
<td>4.3 (0.4)</td>
<td>4.6* (0.4)</td>
</tr>
<tr>
<td>\text{Power}_{4\text{mm}} (W)</td>
<td>222 (42)</td>
<td>239* (38)</td>
<td>228 (51)</td>
<td>249* (45)</td>
</tr>
<tr>
<td>TTE80% (min)</td>
<td>10.86 (2.6)</td>
<td>12.14 (3.2)</td>
<td>8.52 (1.8)</td>
<td>13.83* (4)</td>
</tr>
</tbody>
</table>

*P < 0.05 vs the pre-test value.
The 4 x 8-minute group realized superior improvement in maximal aerobic capacity, peak power output, and endurance time trial performance.
Adaptations to Aerobic Interval Training

Potential Interpretation: By slightly reducing training intensity below near-VO\(_2\)-max intensity and extending total training volume (32-minutes relative to 16-minutes), participants training at approximately 90% of maximal heart rate achieved greater overall adaptive effects than participants training at a higher, relative intensity.
Adaptations to Aerobic Interval Training

Potential Application: Emphasize “combination workouts” that incorporate a spectrum of repetitions *(for example, 2 x 1,200-m, 4 x 800-m, & 6 x 400-m)* and thus provide a complementary, aggregate stimulus for the improvement of both physiological characteristics *(\(VO_2\)-max)* and assessment measures *(time trial performance)*.
Part XVIII

Exercise Interventions and Sports Injury Prevention

© Jeff Messer 2019
Exercise Interventions and Sports Injury Prevention

Exercise Interventions and Sports Injury Prevention

Objective: To assess whether physical activity interventions such as stretching, proprioception, and strength training can reduce sports injuries
Exercise Interventions and Sports Injury Prevention

- PubMed, EMBASE, Web of Science, and SPORTDdiscus databases were searched through October 2012
- Later updated to January 2013
- Search results yielded 3,462 “hits”

- “Hits” were screened by title to yield ninety (90) titles
- Abstract exclusion (based on inclusion / exclusion criteria) yielded forty (40) studies
- Full reading of the forty studies yielded twenty-two (22) studies
- Three (3) studies were added through the updated search

© Jeff Messer 2019
Thus, twenty-five (25) studies were evaluated and judged as appropriately rigorous and specific for inclusion in the meta-analysis.
Exercise Interventions and Sports Injury Prevention

• Results / Conclusions

– Stretching did not evidence any protective effect against sports injuries

– Proprioception training was somewhat effective in protecting against sports injuries

– Strength training demonstrated a highly significant protective effect against sports injuries
Exercise Interventions and Sports Injury Prevention

• Interpretations / Applications

– The meta-analysis does not support the use of stretching for injury prevention either before or after training.

– The analysis strongly supports the incorporation of a strength training component into a physical training regimen in order to reduce the potential for development of a sports injury.
Part XIX

Protein Requirements in Endurance Athletes

© Jeff Messer 2019
Protein Requirements in Endurance Athletes

Protein Requirements in Endurance Athletes

Objective: To quantify the recommended protein intake in endurance athletes during an acute, three-day training period using the indicator amino acid oxidation (IAA0) method

© Jeff Messer 2019
Protein Requirements in Endurance Athletes

- Six male, endurance-trained adults
- Mean VO$_2$-peak = 60.3 \pm 6.7 ml *kg$^{-1}$ * min$^{-1}$
- Acute training session (20-km treadmill run)
- Post-training consumption of variable protein mass

- Utilize labeled phenylalanine method in order to quantify both estimated average protein requirement and recommended protein intake

© Jeff Messer 2019
Protein Requirements in Endurance Athletes

• Current Recommended Dietary Allowance (RDA) is 0.8 grams PRO * kg\(^{-1}\) body mass * day\(^{-1}\)

• Current recommendations for endurance athletes are 1.2 – 1.4 grams PRO * kg\(^{-1}\) body mass * day\(^{-1}\)

© Jeff Messer 2019
Protein Requirements in Endurance Athletes

• Experimental results yield an estimated, average, post-training protein requirement of 1.65 grams PRO * kg\(^{-1}\) body mass * day\(^{-1}\)

• Experimental results yield an estimated, average, post-training recommended protein intake of 1.83 grams PRO * kg\(^{-1}\) body mass * day\(^{-1}\)

© Jeff Messer 2019
Protein Requirements in Endurance Athletes

Potential Interpretation: The metabolic demand for protein intake (1.83 grams PRO * kg\(^{-1}\) body mass * day\(^{-1}\)) in trained endurance athletes engaged in high-volume and / or high-intensity training is not only greater than their sedentary counterparts but also greater than current recommendations for endurance athletes (1.2 – 1.4 grams PRO * kg\(^{-1}\) body mass * day\(^{-1}\))
Mitochondrial Quality versus Mitochondrial Quantity
Mitochondrial Quality versus Mitochondrial Quantity

- Bishop, D., Granata, C., & Eynon, N. (2014). Can We Optimise the Exercise Training Prescription to Maximise Improvements in Mitochondrial Function and Content, Biochimica et Biophysica Acta, 1840, 1266-1275.
Mitochondrial Quality versus Mitochondrial Quantity

Objective: To review relevant literature focused primarily on the effects of exercise / training on both mitochondrial function (quality) and mitochondrial content (quantity)
Mitochondrial Quality versus Mitochondrial Quantity (Bishop et al.)

Fig. 1. Mitochondrial respiration and citrate synthase activity in humans of differing training status [32–39]. SED = sedentary, ACT = active, TRA = trained, MT = moderately-trained, WT = well-trained, and HT = highly-trained.
Mitochondrial Quality versus Mitochondrial Quantity *(Bishop et al.)*

Potential Interpretation: There is a disconnect across various sub-groups (*sedentary, active, well-trained, highly-trained, etc.*) between mitochondrial content (*as assessed by maximal citrate synthase activity*) and mitochondrial function (*as assessed by maximal rate of respiration*)
Mitochondrial Quality versus Mitochondrial Quantity (*Bishop et al.*)

Fig. 2. The relationship between A) training intensity and B) training volume and training-induced changes in mitochondrial respiration in rats [58–60]. Studies were excluded if they did not provide precise information about the training prescription or if they used “mixed training” (i.e., a combination of continuous, moderate-intensity training, and high-intensity interval training).
Mitochondrial Quality versus Mitochondrial Quantity (*Bishop et al.*)

Potential Interpretation: Training intensity exerts a relatively more profound impact on maximal mitochondrial function (*as assessed by maximal rate of respiration, or* V_{MAX} *) than training volume ($R^2 = 0.74$ versus $R^2 = 0.14$)
Mitochondrial Quality versus Mitochondrial Quantity (*Bishop et al.*)

Fig. 4. The relationship between training intensity and training volume and training-induced changes in citrate synthase activity of rats in the red soleus (A and B respectively), the red vastus (C and D respectively), and the white vastus (E and F respectively) [54,58,60,63,93–103]. Studies were excluded if they did not provide precise information about the training prescription or if they used “mixed training” (i.e., a combination of continuous, moderate-intensity training, and high-intensity interval training).
Mitochondrial Quality versus Mitochondrial Quantity (*Bishop et al.*)

Potential Interpretation: Training volume exerts a relatively more profound impact on mitochondrial content (*as assessed by percentage (%) change (\(\Delta\)) in citrate synthase content*) than training intensity (*\(R^2 = 0.88\) & *0.66 versus \(R^2 = 0.12\) & *0.01*)
Mitochondrial Quality versus Mitochondrial Quantity (*Bishop et al.*)

(A) $R^2 = 0.01$

(B) $R^2 = 0.88$

(C) $R^2 = 0.12$

(D) $R^2 = 0.66$

(E) $R^2 = 0.70$

(F)
Mitochondrial Quality versus Mitochondrial Quantity (*Bishop et al.*)

Potential Interpretation: There is a strong relationship between training volume and skeletal muscle mitochondrial content (*as assessed by percentage (%) increase in citrate synthase*) across multiple muscle fiber types (*red soleus, red vastus, and white vastus*)
Mitochondrial Quality versus Mitochondrial Quantity (*Bishop et al.*)

![Graph showing individual changes in mitochondrial respiration during training and de-training.](image)

Fig. 5. Individual changes in mitochondrial respiration during training and de-training [56]. Pre_IT = pre interval training, Post_IT = post interval training, Post_DT = post de-training.
Mitochondrial Quality versus Mitochondrial Quantity (*Bishop et al.*)

Potential Interpretation: An interval training-induced increase in maximal mitochondrial function is reversed over one (1) to three (3) weeks with the cessation of interval training.
Mitochondrial Quality versus Mitochondrial Quantity (Bishop et al.)

Fig. 6. Changes in the activities of cytochrome c oxidase (COX), citrate synthase (CS) and succinate dehydrogenase (SDH) during training cessation in humans. Values are based on results from the few studies that have measured changes in enzyme activity during the cessation of training [66,67,69,70]. Values on the y-axis are percent of pre-training values.
Potential Interpretation: However, rates of regression in distinct components of maximal mitochondrial function appear to differ both across mitochondrial enzymes and across different fiber types.
Mitochondrial Quality versus Mitochondrial Quantity (*Bishop et al.*)

Current, Summary Interpretation: Training intensity appears to be an important determinant of maximal mitochondrial function albeit not mitochondrial content; by contrast, training volume appears to be an important determinant of training-induced adaptation in muscle mitochondrial content albeit not function (*caveat: training intensity & mitochondrial content in type IIx fibers?*)
Mitochondrial Quality

• Hypothesis that training intensity may be a critical determinant of improvements in maximal rate of mitochondrial respiration (MAPR)

• Multiple studies evidence a trend toward greater MAPR with higher training intensities

• Absence of evidence correlating training intensity with enhanced mitochondrial content

© Jeff Messer 2019
Mitochondrial Quantity

- Hypothesis that training volume may be a critical determinant of enhanced mitochondrial content
- Recent research suggests that improvements in MAPR are not proportional to training volume in humans
- Multiple studies evidence a strong correlation between training volume and improvements in mitochondrial content
Mitochondrial Quality and Quantity

Potential Interpretation: Training intensity appears to be an important determinant of improvements in mitochondrial function (*quality*) but not mitochondrial content; by contrast, training volume appears to be a similarly important determinant of improvements in mitochondrial content (*quantity*) albeit not mitochondrial function.
Mitochondrial Quality versus Mitochondrial Quantity

© Jeff Messer 2019
MacInnis et al. (2017)

• Ten (10), young, active males (VO_2-peak = $46.2 \pm 2 \text{ ml O}_2 \times \text{kg}^{-1} \times \text{min}^{-1}$)

• Single-leg cycle ergometry

• All subjects could thus perform high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), AND serve as their own control
MacInnis et al. (2017)
MacInnis et al. (2017)

- HIIT legs performed six (6) sessions of 4 x 5-minutes @ 65% of mean W_{peak} interspersed by 2-minute active recovery periods @ 20% of mean W_{peak}

- MICT legs performed six (6) sessions of 30-minutes @ 50% of mean W_{peak}

- Consequently, total work was equivalent across the HIIT and MICT training
MacInnis et al. (2017)

- Muscle biopsies were drawn from the vastus lateralis of HIIT & MICT legs both pre- and post-training

- Mitochondrial QUANTITY was assessed (maximal O_2 respiratory rates $\{JO_2\}$)

- Mitochondrial QUALITY was assessed (mitochondrial mass-specific JO_2)
MacInnis et al. (2017)

Puncture site

Biopsy needle

© Jeff Messer 2019
MacInnis et al. (2017)

- Notable Data

 - Whole muscle mitochondrial (*citrate synthase*) enzyme activity demonstrated significantly greater percentages increases (39%) consequent to HIIT training relative to MICT training (11%)
MacInnis et al. (2017)

• Notable Data

– Similar whole muscle mitochondrial enzyme activity increases were significantly greater in multiple electron transport chain enzymes (22% {HIIT} vs. -7% {MICT} for Complex I and 22% {HIIT} vs. -9% {MICT} for Complex I + Complex II)
• Notable Data

- **Mitochondrial-specific JO₂** (i.e. mitochondrial quality) appears to be largely unaffected by short-term training intervention(s) and relatively modest differences between MICT and HIIT training intensities

- However, Granata et al. (2016) has previously demonstrated that sprint interval training (SIT) is associated with increased mitochondrial-specific JO₂ (i.e. mitochondrial quality)
• Potential Interpretation(s)

– So-called high-intensity interval training should necessarily include both HIGH-intensity movement (such as sprinting or near-sprinting) and sufficient duration (such as nine \{9\} weeks per Granata et al. \{2016\}) in order to elicit improvement in mitochondrial quantity and / or mitochondrial quality
Part XXI

Carbohydrate (CHO) Manipulation & Adaptation

© Jeff Messer 2019
Carbohydrate Manipulation & Adaptation

Carbohydrate Manipulation & Adaptation

• “You need to teach your body to operate with low glucose stores because that’s what you’ll be facing in the later miles of a marathon.”

• “By not taking in carbs or energy gels during the run, you’re giving your body no choice but to go to fat-burning. You will feel fatigued near the end, but that’s necessary if you want to get stronger.”

© Jeff Messer 2019
Carbohydrate Manipulation & Adaptation

• The essential premise is that the combination of 1) contractile activity (i.e. training) and 2) intentionally compromised muscle glycogen availability combine to amplify the training-induced up-regulation of multiple proteins that underlie mitochondrial biogenesis

© Jeff Messer 2019
Carbohydrate Manipulation & Adaptation

• Prior slide … stated more succinctly …

• Training with diminished carbohydrate availability allows for enhanced skeletal muscle mitochondrial content and, ultimately, greater aerobic capacity

© Jeff Messer 2019
Carbohydrate Manipulation & Adaptation

Has such a hypothesis been strongly, experimentally supported?

NO
Carbohydrate Manipulation & Adaptation

- What does existing scientific literature reveal?

 - Multiple protein precursors (specifically, mRNA’s) associated with mitochondrial biogenesis can indeed be further up-regulated through the juxtapositioning of compromised carbohydrate status with, for example, endurance training
Carbohydrate Manipulation & Adaptation

• The mRNA → protein synthesis relationship has yet to be compellingly demonstrated
 – Increased mRNA content is necessary albeit not necessarily sufficient for increased protein expression

• Enhanced endurance performance has yet to be quantified

© Jeff Messer 2019
Carbohydrate Manipulation & Adaptation

• **Potential application for high school endurance** *(student-)*-athletes

 – Undertake and complete periodic, two-a-day training sessions with the second session performed with compromised carbohydrate status

© Jeff Messer 2019
Part XXII

Acknowledgments

© Jeff Messer 2019
Acknowledgments

• Mr. Tim O’Rourke – *Invitation*

• Mount San Antonio College – *Host Institution*

• Mesa Community College Exercise Science Department – *Colleagues & Friends*

• Desert Vista High School Distance Runners – *Continuous Inspiration (to me) through Belief, Caring, Principle-Centered Living, & Commitment to Excellence*
Student-Athlete Acknowledgments

• Cassie (*Rios*) Bando (*XCP*, ‘03)
• Tara Erdmann (*Flowing Wells HS*, ‘07)
• Kari Hardt (*Queen Creek HS*, ‘06)
• Sherod Hardt (*Queen Creek HS*, ‘10)
• Garrett Kelly (*Desert Vista HS*, ‘06)
• Haley (*Paul*) Jones (*Desert Vista HS*, ‘04)
• Allison Maio (*XCP*, ‘12)
• Sarah Penney (*XCP*, ‘09)
• Kevin Rayes (*Arcadia HS*, ‘09)
• Jessica Tonn (*XCP*, ‘10)
Student-Athlete Acknowledgments

- Michelle Abunaja (DVHS, ‘14)
- Shelby Brown (XCP, ‘14)
- Madi Bucci (DVHS, ‘17)
- Daylee Burr (XCP, ‘11)
- Sabrina Camino (DVHS, ‘17)
- Mandy Davis (DVHS, ‘17)
- Jordan Furseth (DVHS, ‘16)
- McKenna Gaffney (XCP, ‘13)
- Savannah Gaffney (XCP, ‘14)
- Sophi Johnson (DVHS, ‘15)
- Baylee Jones (DVHS, ‘17)
- Danielle Jones (DVHS, ‘17)
- Lauren Kinzle (XCP, ‘15)
- Natalie Krafft (DVHS, ‘13)
- Kyra Lopez (DVHS, ‘15)
- Jenna Maack (DVHS, ‘13)

- Samantha Mattice (XCP, ‘14)
- Jane Miller (XCP, ‘16)
- Jessica Molloy (MBHS, ‘15)
- Shannon Molvin (XCP, ‘15)
- Laura Orlie (XCP, ‘12)
- Caroline Pass (DVHS, ‘16)
- Tessa Reinhart (DVHS, ‘15)
- Elise Richardson (DVHS, ‘14)
- Emily Smith (DVHS, ‘16)
- Mason Swenson (DVHS, ‘16)
- Brittany Tretbar (DVHS, ‘16)
- Julianne Vice (XCP, ‘13)
- Kate Welty (XCP, ‘14)
- Haley Wolf (DVHS, ‘18)
- Kate Yanish (XCP, ‘12)
- Aubrey Worthen (DVHS, ‘16)
Part XXIII

Questions & Discussion

© Jeff Messer 2019
Questions & Discussion
Part XXIV

Appendices
Appendix A: Warm-up A

- 1,000-meter jog
- Step-Outs with Torso Rotations (4 Step-Outs with 6 Rotations per Step)
- Forward Lunge with Right / Left Torso Rotation (6 repetitions)
- Forward Lunge with Rotating Twist & Reach (6 repetitions)
- Forward Lunge with Two-Arm Vertical Reach (6 repetitions)
- Modified Power Walks (20 Repetitions)
- Carioca (2 x 8 repetitions)
- Progressive Speed A-Skips (24 Repetitions)
- B-Skips (24 repetitions)
- Progressive Turnover High Knees (50 repetitions)
- Two (2) to Four (4) x 100-meter Strides
- WORKOUT or RUN

© Jeff Messer 2019
Appendix B: Warm-up B

- 1,000-meter jog
- Hip-Twist with Ankle Hops (20 hop repetitions & 30 hop / twist repetitions)
- Progressive Speed Base Rotations (50 repetitions)
- Lateral Lunge with Rotation (6 repetitions / 3 per side)
- Backward Lunge with Vertical Reach (6 repetitions)
- Forward Lunge with Hamstrings Group Stretch (6 repetitions)
- Modified Power Walks (20 Repetitions)
- Carioca (2 x 8 repetitions)
- Hamstrings Group Kicks (Fifteen {15 }”touches” per leg)
- B-Skips (24 repetitions)
- Progressive Turnover High Knees (50 repetitions)
- Two (2) to Four (4) x 100-meter Strides
- WORKOUT or RUN

© Jeff Messer 2019
Appendix C: Warm-up C

- 1,000-meter jog
- Ten (10) Alternating Knee Hugs with Heel Raise
- Ankling (approximately 25- to 35-meters)
- Hamstring Kicks (Fifteen {15}”touches” per leg)
- Side Walking Lunge (Eight {8} Rightward / Eight {8} Leftward Lunges)
- Side Shuffle with Arm Swing (Eight {8} Rightward / Eight {8} Leftward Shuffles)
- Lateral A-Skips (Twelve {12} Rightward / Twelve {12} Leftward Skips)
- Backward Run (approximately 30- to 50-meters)
- Single Leg Skip (approximately 20- to 40-meters; alternate lead leg)
- Two (2) to Four (4) x 100-meter Strides
- WORKOUT or RUN
Appendix D: Warmdown A

- Nick Swings (4 right circles, 4 left circles)
- Arm Swings (4 forward circles, 4 backward circles)
- Chest Stretch
- Trunk Rotation (4 right circles, 4 left circles)
- Rock Squat (10 repetitions)
- Quadriceps Group Stretch (10 count per quadriceps group)
- Piriformis Stretch (10 count per quadriceps group)
- Hamstrings Group Stretch (10 count per hamstrings group)
- Lunge Stretch (10 count per lunge)
- Gastrocnemius / Soleus Stretch (10 count per leg)
Appendix E: General Strength (GS) / Plyometric Routine I

- “Runner’s” Push-ups (30-seconds of continuous repetitions = 1 set)
- “Russian” Twists (30-seconds of continuous repetitions = 1 set)
- Hyperextensions (30-seconds of continuous repetitions = 1 set)
- “Prisoner” Squats (30-seconds of continuous repetitions = 1 set)
- Ankle Hoops (30-seconds of continuous repetitions = 1 set)
- Split Squat Jumps (30-seconds of continuous repetitions = 1 set)

- 1 set of every GS / Plyometric movement = 1 circuit

- Perform continuous circuits utilizing a 30-second “on” / 20-second “off” work / recovery combination for a total of 10- to 20-minutes
Appendix F: General Strength (GS) / Plyometric Routine II

- Abdominal Crunches (30-seconds of continuous repetitions = 1 set)
- Rocket Jumps (30-seconds of continuous repetitions = 1 set)
- “V” Sit-Ups (30-seconds of continuous repetitions = 1 set)
- Supine Bridge with Alternating Leg Raises (30-seconds of continuous repetitions = 1 set)
- Right “Plank” with Left Leg Raises (30-seconds of continuous repetitions = 1 set)
- Left “Plank” with Right Leg Raises (30-seconds of continuous repetitions = 1 set)

- 1 set of every GS / Plyometric movement = 1 circuit

- Perform continuous circuits utilizing a 30-second “on” / 20-second “off” work / recovery combination for a total of 10- to 20-minutes
Appendix G: General Strength (GS) / Plyometric Routine III

- Prone “Plank” with Alternating Leg Raises (30-seconds of continuous repetitions = 1 set)
- Continuous Hurdle Jumps (30-seconds of continuous repetitions = 1 set)
- Supine “Plank” with Alternating Leg Raises (30-seconds of continuous repetitions = 1 set)
- Scissor Jumps for Height (30-seconds of continuous repetitions = 1 set)
- Side-Ups (30-seconds of continuous repetitions = 1 set)
- Skips for Vertical Displacement (30-seconds of continuous repetitions = 1 set)

1 set of every GS / Plyometric movement = 1 circuit

Perform continuous circuits utilizing a 30-second “on” / 20-second “off” work / recovery combination for a total of 10- to 20-minutes

© Jeff Messer 2019
Appendix H: General Strength (GS) / Plyometric Routine IV

- Donkey Kicks (30-seconds of continuous repetitions = 1 set)
- Straight-Arm Prone Plank w/ Single Leg Stride (30-seconds of continuous repetitions = 1 set)
- Push-up to Prone Plank w/ Bilateral Hip / Knee / Ankle Flexion & Extension (30-seconds of continuous repetitions = 1 set)
- Donkey Whips (30-seconds of continuous repetitions = 1 set)
- Lateral Plank w/ Straight Leg Raise (30-seconds of continuous repetitions = 1 set)
- Modified Russian Twist (30-seconds of continuous repetitions = 1 set)

- 1 set of every GS / Plyometric movement = 1 circuit

- Perform continuous circuits utilizing a 30-second “on” / 20-second “off” work / recovery combination for a total of 10- to 20-minutes
Appendix I: General Strength (GS) / Plyometric Routine V

- Lateral Lunge Walks w/ Runner’s Arms (30-seconds of continuous repetitions = 1 set)
- Lateral Shuffle w/ Runner’s Arms (30-seconds of continuous repetitions = 1 set)
- Lateral A-Skips (30-seconds of continuous repetitions = 1 set)
- Lateral Plank w/ Lower Limb Ankle / Knee / Hip Flexion & Extension (30-seconds of continuous repetitions = 1 set)
- Lateral Plank w/ Straight Leg Raise (30-seconds of continuous repetitions = 1 set)
- Lateral Leg Swings (30-seconds of continuous repetitions = 1 set)

- 1 set of every GS / Plyometric movement = 1 circuit

- Perform continuous circuits utilizing a 30-second “on” / 20-second “off” work / recovery combination for a total of 10- to 20-minutes